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The existence of a spontaneous magnetization in the three-dimensional Ising 
model in a weak random magnetic field (RFIM) is investgated. Following Imry 
and Ma, we consider the energy change, AET, from the fully aligned ferromag- 
netic state caused by flipping all the spins inside a connected surface, y. It is 
proved rigorously that with high probability, AE v is positive for all y enclosing 
the origin. Under the unproven assumption that the expectation value of the 
spin at one site is weakly correlated with the random fields at far away sites 
(which is true if surfaces within surfaces can be ignored) it follows that the 
three-dimensional RFIM has a spontaneous magnetization at low temperatures. 
The proof works for all dimensions greater than two, providing support for the 
conjecture that two is the lower critical dimension. 
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In recent years, the physics of disordered systems has been among the most 
active branches of statistical and condensed matter physics. Among the 
problems in this domain that have received much attention are the follow- 
ing: 

1. Anderson localization and the metal-insulator transition. 
2. The physics of glasses and of spin glasses. 
3. Ferromagnets in a random magnetic field. 

In this paper we describe and derive some mathematically precise results on 
the random field Ising model (RFIM), i.e., problem (3). The Ising model in 
a random magnetic field is used to describe many physical systems, among 
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them the following: 
a. Dilute, highly anisotropic antiferromagnets in a uniform, external 

magnetic field. (1,2) 
b. The statistics of droplets of a fluid (e.g., oil) in a porous medium. (3) 
c. Commensurate charge density waves in solids containing ran- 

domly distributed impurities. (4) 
It is widely believed that the upper critical dimension of the RFIM is 

d u = 6; see Refs. 5-7. There has, however, been considerable theoretical 
and experimental controversy as to the value of the lower critical dimension 
dl, i.e., the dimension below which long-range ferromagnetic order cannot 
exist. (5-14) Perturbative arguments, involving a heuristic study of the most 
infrared divergent diagrams in a Landau-Ginsburg version of the RFIM, 
show that, to all orders in 6 - e, the critical behavior of the RFIM is the 
same as that of the pure Ising model in 4 -  e. (5-7'1~ This suggests that 
d t = 3 since the lower critical dimension of the pure Ising model is one. 
These arguments can also be derived with the help of supersymmetry as 
noted by Parisi and Sourlas (1~ and analyzed more carefully in Refs. 11 and 
12. However, the first step in the Parisi-Sourlas argument in which thermal 
averages of e-CH are replaced by averages over all extrema of the Hamilto- 
nian is questionable, since even at zero temperature where the approxima- 
tion should be best, only absolute minima of the Hamiltonian should be 
included. In contrast, domain wall arguments of Imry and Ma, (13'14/ which 
have much intuitive appeal, suggest that dl = 2. In two dimensions one 
expects that there is no long-range ferromagnetic order at any temperature 
for arbitrarily weak disorder. 

In this paper we propose a sharper and mathematically more precise 
version of the I mry -Ma  domain wall arguments which lends additional 
support to the conjecture that d t = 2. 

Before proceeding to analyze the RFIM let us define the classical 
Hamiltonian function H which can be used to describe the statistics of 
droplets of a fluid in a porous medium: 

Ha(n,h ) = a E '  (n i -  nj) 2+ e E hini (1) 
i , j~A i~A 

Here A is a subset of the lattice Zd. The sum ~]' ranges over nearest- 
neighbor pairs in A, and the "occupation numbers" n i take the values 0, or 
1, for all i. The variables eh i are energies which determine the affinity of the 
environment at site i to the fluid and a represents the interracial tension. 
We suppose that the h i are independent Gaussian random variables. 

The remainder of this paper is devoted to analyzing the Hamiltonian 
for the RFIM equivalent to that in (1), given by 

~/A(o,h) = -- ~ '~ io j - -  e~h~o~ (2) 
A A 
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where o~ = + 1. We shall assume again that the hg are independent Gauss- 
ian and 

h i = O, hih j = 8ij 

The bar denotes averages over the h. The parameter e measures the strength 
of the disorder. Unless otherwise stated we shall always be considering the 
three-d imens ional  case. Let us denote the partition function and correla- 
tions with + ( - )  boundary conditions on the inner boundary of A by 

+ 

zZ<->(h)  = (3) 
{o) 

+ - f l H A ( a , h  ) <o>+(-)( /3, h) = ~ (-)oi e (4) 
{,:,} ZA +(-)  

For d > 2 we shall present domain wall arguments in favor of a 
spontaneous magnetization, i.e., 

(o0> + (/3,h) > 1/2 (5) 

for all A containing any particular site 0, provided/3 is large and e is small. 
Our approach is in the spirit of the coarse graining ideas of Grinstein 
and Ma (14) and also of Villain. (4) We consider all possible connected do- 
main walls, even those which become disconnected after coarse graining. 
J. Chalker has presented arguments similar to those given here, (15) Under 
the assumption specified below we shall prove that for sufficiently large/3 
and small e, 

<1 - o o > ~ ( / 3 ,  h)  ~< e - ~  (6)  

holds with probability 1 - e x p ( - c o n s t / e 2 ) .  5 From this fact (5) follows 
easily. 

To each spin configuration let us associate the set (Y i} where ~'i are 
connected domain  walls or contours across which the spins o change sign. 
Let 7̀ be the set of sites inside y. We let ]y] and ]'7] denote the surface area 
of y and the volume of `7, respectively. As in the Griffiths-Peierls argu- 
ment (16) it is easy to show that 

(1 - o0>~(/3, h ) <  ~,, e#r~(h)e-ZBIvl (7) 
?50 

where the sum ranges over all contours (connected) which enclose the 
origin and 

/3g~(h) --  in Z~- (h) - In Z + (h) (8) 

The effect of the contours inside 7̀ has been incorporated in our definition 

5 Throughout this paper "const" denotes some positive independent of y, ~, /3, and a scale 
index k introduced later. 
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of F T. Clearly if the event 

Q = {hl[F~(h)[ <~ IT[, for all Y,'7 ~ 0} (9) 

occurs with probability 1 - e x p ( - c o n s t / e  2) then (6) follows from (7), for 
sufficiently large fl, since the number of contours with area IYI is bounded 
above by exp(const[T[), and IV[ >/6. See Ref. 16. 

Roughly speaking Fv(h ) = 2e~,vh i. More precisely, from (8) we have 

F~(h) = fo I dsd F~(sh)ds=e ie~,E h~rl<o,)(jo fi, sh)ds 

where 

< �9 = <. >- (B,h) + <. >- (B,  - h )  

We shall establish the existence of a ferromagnetic state under the 
assumption that for Vj, V 2 c 7/3 

(-const   1 Prob{lFv,(h  ) - Fv2(h)l >/ B } < exp ;2i~2~ ~1 ] %- exp(~ -~_2i V~---~c~ B 2 ) 

(10) 

Here F v is given by (8) with 7 replaced by V. 
If there are no contours within contours, as is assumed in Refs. 13, 14, 

and 15, then 

F~(h) = 2e E h, 
i E7  

and (10) follows from a simple Gaussian calculation. Also if <oi>(•,h ) 
depends "weakly" on hj for IJ - i] >> 1 then (10) holds. This weak depen- 
dence holds at each order of perturbation theory in the parameter e since 
the connected correlations of the ( - )  state decay exponentially fast. 
However, e is a dangerous parameter to expand in, and a deeper analysis is 
needed to test the validity of (10). 

To show that the complement of Q, Q c, is unlikely we note that for a 
fixed contour 7 

-- const]T] 2 
Prob{Fv(h) /> 171} ~< exp ~21~ I (11) 

If ]71 = L2 then [7[ < constL3, hence the right-hand side of (11) is bounded 
by exp( -cons tL /e2 ) .  On the other hand there are (16) exp(constL 2) con- 
tours T of area L 2, and we see that this is naive analysis is inadequate. We 
need to take advantage of the fact that many contours enclose essentially 
the same volume, i.e., the { Fv) are highly dependent. This will be done by 
introducing coarse-grained contours made of lattice squares of side M k, 
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k -- 0, l, 2 , . . .  which approximate 7. (The parameter M may be set equal 
to 2 for the purposes of our discussion.) The corresponding coarse-grained 
contours given by 7 = 7o, 71, 72 . . . .  are defined as follows. 

Let gk be the family of cubes with sides of length M ~, centered on the 
sublattice M k �9 7/3. A cube c ~ ~k is said to be admissible with respect to 
y if 

Ic n "71/> • 2 ~ - ~  

Now we define 7k to be the union of all admissible cubes c E ~'k and set 
7k = 07k. For k/> 1, ~7~ need not  be the interior of 7~, in fact 7k need not be  
connected. 

Proposi t ion 1. There are constants independent of k and 7 such that 

(a) I~'k[ < constlyl 

i.e., the volume of the corridor between "Tk and 7k+t is of order Mk[TI. 

S k e t c h  o f  Proo[. Let U =  c U c', where c and c' are adjacent cubes 
in {k with c admissible and c' inadmissible. To prove (a) it suffices to 
show that [7 N U[ >/constM 2k. By our definition of admissiblity we have 
�89 [yN U I <3M3k. The lower bound assures us that ]O(~N U)] 
) cons tM 2k. The upper bound may be used to show that [Y N U[ 
1> constl0(7 n U)I. This can be seen by considering projections of y onto 
the faces of U. To establish (b), consider a cube ? E z~k+ 1 such that 
? N 7~+ l\'7k =/= 0. This easily implies that ? contains a pair of a cubes c,c'  as 
above. Thus ~ constM~] ? n 71 and the first inequality of (b) follows. 
The second inequality is proved similarly. 

Let us define the set of fields (h) for which the tota l  field in the 
corridor between ~k and Yk+l is not atypical: 

d~k(A) = (h  : IF~k(h) - FVk ,(h)[ ~< A / ( 2 k 2 ) ,  

for all 7, with 171 = A and "7 ~ 0} (13) 

For fixed contour area A we terminate our coarse-graining procedure when 
k = N ( A )  = N, where M 2N(A) ~ A 2/3. The set of fields {h} for which the 
final coarse-grained volume does not have an anomalously large total field 

d~lv(A)= { h ' [ F v ~ ( h ) l < A / ( 2 U  2) for all T, with lvl = A a n d ~ 0 }  (14) 

Using the fact that ~ =  ~(2k2) - 1 < 1 it follows that 

N(A ) 

Q f-) A C (A) 
A>~6k>~l 
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hence 
N(A ) 

Prob(QC) -<< 2 2 Pr~ ~) 
A~>6 k 

The next proposition is our main technical estimate. 

(15) 

Proposi t ion  2. The number of coarse-grained contours ~'k as 7 
ranges over all possible connected contours 3' such that ~7 ~ 0 and ]71 = A is 
less than 

exp( + const kA 
M2 k ) (16) 

The idea behind the proof of this proposition is simple. By Proposition 
1, ~'k consists of const lTI/M 2k squares of area M 2k. If ~,~ were connected 
for all choices of 7, (16) would follow immediately. Although the coarse- 
grained contours need not be connected (even though 7 is always con- 
nected), the number of components of 7~ is less than c o n s t A / M  2(k-1) 
because each component must have cons tM a(k-l) points in it. This fact 
together with the observation that the distance connecting the components 
must be less than A (because 7 is connected) enables us to establish 
Proposition 2. Details appear in the Appendix. 

Next we claim that, for k < N(A),  

Prob{ d)k(A) c } < exp( - - M ~  ) - 2  constAk exp( - constA ~2k__s ) 

By Proposition 2, the first factor is an upper bound on the number of 
coarse-grained pairs 7k, 7k-1" The second factor follows from our assump- 
tion (10) together with (13). It represents the probability that a particular 
coarse-grained corridor has a large total field. When n = N(A)  we note that 
[~NI < c~ Thus 

- constA ~/z Prob{ GN(A) C } < exp[2 -- cons tAl /3N(A)]  �9 exp 
c2N4(A) 

which is small because N ( A )  is logarithmic in A. 
Now the sum over A and k in (15) is easily seen to converge and yield 

the bound 

Prob{ QC } < e x p ( - c o n s t / c  2) 

This completes our proof. Formally similar arguments can be made in 2 § e 
dimensions for any positive e. However, when d = 2 the bound for the 
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number of pairs Yk, Yk-1 becomes 

exp[2constAk/Mk-1 l 
causing the sum in (15) to diverge, and our proof fails. 

W e  hope that our assumption (10) can be proved for three dimensions 
and that in fact the arguments given here will provide an initial step. 
However, in two dimensions it will quite possibly break down, and contours 
within contours may play an important role. 
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A P P E N D I X :  P R O O F  OF  P R O P O S I T I O N  2 

Let y~ denote the components of Yk, i.e., the separate connected parts k 

of Yk. As we noted earlier, there are less than c o n s t A / M  2(k- 1) = ~, such 
components, and ~]~[Tfl] < constA. Let x ~ be a set of lattice points in 
M~.  Z 3, and define d 1 = Ixll, d 2 = ix 2 -  xll . . . . .  d l = I x / -  x~-~ I. Now 
fix x ~, c~ = 1,2 . . . .  < a*. Let Fk((x~,a~})  be the number of coarse- 
grained contours Yk such that each Yff contains a fixed point x ~ and has 
area a ~ = I Yffl. Then 

Fk((x~,a~})  < exp(cons t~a~/M 2k ) <<. exp(constA/M 2k) (A.1) 

The number of {a ~ } which are multiples of M 2~ such that ~ a  ~ < A is less, 
than 2 A/m2k. 

It now remains to bound the number of possible x~'s. Since y is 
connected, it follows that we can relabel the c~ such that 

or* 

d e < 2A (a.2)  

If the d~ are specified it is easy to see that there are less than I-[~*constds 
possible choices of the (x ~} in three dimensions. This product is maximal 
when th e d~ are equidistant; hence the product is bounded by 

cons tA  c~* 3~* < exp c~ ~--~2k [ 

Finally the number of solutions to (A.2) is also bounded by I(constA)/ 
a*l ~*, and our proof of Proposition 2 is complete. 
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Remark. We have used the fact that the 
(d~ . . . .  , din) to the equation 

ei= u,  di > l 
i = 1  

equals the binomial coefficient 

N m ( c o n s t N )  ~" 

number of solutions 
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